

Intertek Legal Entity: Intertek Testing Services Shenzhen Ltd. Guangzhou Branch Address: Block E, No.7-2 Guang Dong Software Science Park, Caipin Road, Guangzhou Science City, GETDD Guangzhou, China Tel / Fax: 86-20-8213 9688/86-20-3205 7538

Test Verification of Conformity

On the basis of the referenced test report(s), the sample(s) of the below product has been found to comply with the relevant harmonized standard(s) to the directive(s) listed on this verification at the time the tests were carried out. The manufacturer may indicate compliance to only the said directives by signing a DoC himself and may affix the CE marking to products identical to the tested sample(s) if the product complies with all CE marking directives that has the product in their scope. In addition, the manufacturer shall file and keep the documentation according to the rules of the applicable directive(s) and shall consider changes of the standards as they may occur. Additional requirements, additional directives and local laws may be applicable.

Applicant Name & Address

: Eaglerise Electronics (Foshan) Co., Ltd.

No. 4, East Huanzhen Road, Beijiao, Shunde, Foshan,

Guangdong, 528000, China

Product(s) Tested

Electronic controlgear for LED (Electronic LED driver)

Ratings and principal characteristics

: See Annex to Test Verification of Conformity

On an action to the

Brand name

Model(s)

: See Annex to Test Verification of Conformity

EAGLERISE

Relevant Standard(s) / Specification(s) / Directive(s)

EN 55015: 2006+A1: 2007+A2: 2009/ Limits and methods of measurement of radio disturbance characteristics of electrical lighting and similar equipment

EN 61000-3-2: 2006+ A1: 2009+ A2: 2009/ Electromagnetic compatibility (EMC) – Part 3-2: Limits – Limits for harmonic current emissions (equipment input current \leq 16 A per phase)

EN 61000-3-3: 2008/ Electromagnetic compatibility (EMC) − Part 3-3: Limits – Limitation of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems, for equipment with rated current ≤ 16 A per phase and not subject to conditional connection

EN 61547: 2009/ Equipment for general lighting purposes — EMC immunity requirements

EMC Directive 2004/108/EC

Verification Issuing Office Name

& Address

Same as Legal Entity

Verification/Report Number(s)

GZ12060240-1/ GZ12060240-1

Note 1: This verification is part of the full test report(s) and should be read in conjunction with it.

This Verification is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this Verification. Only the Client is authorized to copy or distribute this Verification. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results referenced from this Verification are relevant only to the sample tested. This Verification by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

CE

Signature

Name: Steven Zhou

Position: Sr.Project Engineer

Date: 02 Aug.,2012

P. 1 of 2

Intertek Legal Entity: Intertek Testing Services Shenzhen Ltd. Guangzhou Branch Address: Block E, No,7-2 Guang Dong Software Science Park, Caipin Road, Guangzhou Science City, GETDD Guangzhou Tel / Fax: 86-20-8213 9688/86-20-3205 7538

Annex to Test Verification of Conformity

This is an Annex to Test Verification of Conformity with Verification/Report Number(s): GZ12060240-1/ GZ12060240-1. The issuing office is Intertek Testing Services Shenzhen Ltd. Guangzhou Branch (Address: Block E, No, 7-2 Guang Dong Software Science Park, Caipin Road Guangzhou Science City, GETDD Guangzhou).

Ratings and principal characteristics

Input: 220-240 VAC; 50/60 Hz; 0,09 A; Class II; IP 20; SELV;

ta 50 °C; tc 75 °C; Independent type; 110 °C thermal

protection;

Inherently short-circuit proof; Output: Constant current type

for output; MM mark;

Suitable for direct mounting on normally flammable

surfaces;

Other parameters refer to appendix for model list.

Model(s)

EIP012C****LS

Remark:

The 1st to 4th "*" indicate the output current of LED driver; can be replaced by "0250" to "1200" and increasing in multiplies of 50. "0250" means 250 mA; "1200" means 1200

mΑ.

Note 1: This annex is part of the Test Verification of Conformity and should be read in conjunction with it.

This Verification is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this Verification. Only the Client is authorized to copy or distribute this Verification. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results referenced from this Verification are relevant only to the sample tested. This Verification by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Signature

Name: Steven Zhou

Position: Sr.Project Engineer

Date: 02 Aug.,2012

TEST REPORT

Applicant Name &

: Eaglerise Electronics (Foshan) Co., Ltd.

Address

No. 4, East Huanzhen Road, Beijiao, Shunde, Foshan, Guangdong, 528000,

China

Manufacturing Site

: Same as applicant

Sample Description

Product

Electronic controlgear for LED (Electronic LED driver)

Model No.

EIP012C****LS

Remark:

The 1st to 4th "*" indicate the output current of LED driver; can be replaced by "0250" to "1200" and increasing in multiplies of 50. "0250" means 250 mA;

"1200" means 1200 mA.

Electrical Rating

: Input: 220-240 VAC; 50/60 Hz; 0,09 A; Class II; IP 20; SELV;

ta 50 °C; tc 75 °C; Independent type; 110 °C thermal protection;

Inherently short-circuit proof;

Output: Constant current type for output;

MM mark;

Suitable for direct mounting on normally flammable surfaces;

Other parameters refer to Page 6 Model list

Date Received

05 June 2012

Date Test Conducted

08 June 2012 – 15 June 2012

Test standards

EN 55015: 2006+A1: 2007+A2: 2009

EN 61000-3-2: 2006+ A1:2009+ A2:2009

EN 61000-3-3: 2008 EN 61547: 2009

Test Result

: Pass

Conclusion

The submitted samples complied with the above EMC standards.

Remark

: None.

Prepared and Checked By:

Approved By:

Helen Ma

Project Engineer

Intertek Guangzhou

Steven Zhou

Sr.Project Engineer

Intertek Guangzhou

02 Aug., 2012 Date

Signature

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program. The test report only allows to be revised within three years from its original issued date unless further standard or the requirement was noticed.

CONTENT

Τŀ	TEST REPORT	
C	CONTENT	
1	1 TEST RESULTS SUMMARY	4
2		
3		
4		
	4.1 EN 55015 CONTINUOUS CONDUCTED DISTURBANCE VOLTAGE TEST	
	4.1.1 Used Test Equipment	
	4.1.2 Block Diagram of Test Setup	
	4.1.3 Test Setup and Procedure	
	4.1.4 Test Data	
	4.1.5 Emission Curve	
	4.1.0 Measurement Oncertainty	
	4.2.1 Used Test Equipment	
	4.2.2 Block Diagram of Test Setup	
	4.2.3 Test Setup and Procedure	
	4.2.4 Test Data	
	4.2.5 Test Curve	
	4.2.6 Measurement Uncertainty	
	4.3 EN 55015 RADIATED ELECTROMAGNETIC DISTURBANCE (30 MHz -300 MHz, CDN MET	
	4.3.1 Used Test Equipment	
	4.3.2 Block Diagram of Test Setup	
	4.3.3 Test Setup and Procedure	
	4.3.4 Test Data	24
	4.3.5 Test Curve	
	4.3.6 Measurement uncertainty	
	4.4 Insertion Loss	27
5	5 HARMONICS OF CURRENT	28
6	6 FLICKER	28
7	7 EMS TEST	29
	7.1 EN 61000-4-2(Pursuant to EN 61547) ELECTROSTATIC DISCHARGE IMMUNITY	29
	7.1.1 Used Test Equipment	
	7.1.2 Block Diagram of Test Setup	
	7.1.3 Test Setup and Procedure	
	7.1.4 Test Result	
	7.2 EN 61000-4-6(Pursuant to EN 61547) Injected Current (0.15 MHz to 80 MHz)	
	7.2.1 Used Test Equipment	
	7.2.2 Block Diagram of Test Setup	
	7.2.3 Test Setup and Procedure	
	7.2.4 Test Result	
	7.3 EN 61000-4-4(Pursuant to EN 61547) ELECTRICAL FAST TRANSIENT/BURST	
	7.3.1 Used Test Equipment	
	7.3.2 Block Diagram of Test Setup	
	7.3.3 Test Setup and Procedure	
	7.3.4 Test Result	
	7.4 EN 61000-4-5(PURSUANT TO EN 61547) SURGE IMMUNITY	
	7.4.1 Used Test Equipment	
	7.4.3 Test Setup and Procedure	
	7.4.4 Test Result	

	7.5	EN 6	51000-4-11(Pursuant to EN 61547) Voltage Dips and Interruptions	37
		5.1	Used Test Equipment	
	7.	5.2	Block Diagram of Test Setup	37
	7.	5.3	Test Setup and Procedure	
	7.	5.4	Test Result	
	7.6	EN 6	1000-4-3(Pursuant to EN 61547) Radiated Electromagnetic Field Immunity	39
		6.1	Used Test Equipment	
	7.	6.2	Block Diagram of Test Setup	
	<i>7</i> .	6.3	Test Setup and Procedure	
	7.	6.4	Test Result	
	7.7	EN 6	51000-4-8(Pursuant to EN 61547) Power Frequency Magnetic Field Immunity	41
8	\mathbf{A}	PPEN	IDIX I - PHOTOS OF TEST SETUP	42
9	A	PPEN	IDIX II- PHOTOS OF EUT	46
-				

TEST RESULTS SUMMARY

Test Item	Standard	Result
Continuous conducted disturbance voltage	EN 55015: 2006+A1: 2007+A2: 2009	Pass
Radiated electromagnetic disturbance (9 kHz -30 MHz)	EN 55015: 2006+A1: 2007+A2: 2009	Pass
Radiated Electromagnetic Disturbance (30 MHz -300 MHz)	EN 55015: 2006+A1: 2007+A2: 2009	Pass
Insertion loss	EN 55015: 2006+A1: 2007+A2: 2009	N/A
Harmonic of current	EN 61000-3-2: 2006+ A1:2009+ A2:2009	Pass
Flicker	EN 61000-3-3: 2008	Pass
ESD immunity	EN 61547:2009 Reference: EN 61000-4-2: 2009	Pass
Radiated EM filed immunity	EN 61547:2009 Reference: EN 61000-4-3:2006+A1 :2008	Pass
EFT immunity	EN 61547:2009 Reference: EN 61000-4-4:2004	Pass
Surge immunity	EN 61547:2009 Reference: EN 61000-4-5:2006	Pass
Inject current immunity	EN 61547:2009 Reference: EN 61000-4-6:2009	Pass
Power frequency magnetic field immunity	EN 61547:2009 Reference: EN 61000-4-8:1993+A1:2001	N/A
Voltage dips and interruption immunity	EN 61547:2009 Reference: EN 61000-4-11:2004	Pass

Remark: 1. The symbol "N/A" in above table means Not Applicable.

2. When determining the test results, measurement uncertainty of tests has been considered.

2

Report No.: GZ12060240-1

EMC Results Conclusion

(with Justification)

RE: EMC Testing Pursuant to EMC Directive 2004/108/EC Performed on the Electronic controlgear for LED (Electronic LED driver), Models: EIP012C****LS.

We tested the Electronic controlgear for LED (Electronic LED driver), Model: EIP012C1200LS, EIP012C0700LS, EIP012C0250LS, to determine if they were in compliance with the relevant EN standards as marked on the Test Results Summary. We found that the unit met the requirement of EN 55015, EN 61000-3-2, EN 61000-3-3, EN 61547 (EN 61000-4-2), EN 61547 (EN 61000-4-4), EN 61547 (EN 61000-4-6), EN 61547 (EN 61000-4-5), EN 61547 (EN 61000-4-11), & EN 61547 (EN 61000-4-3) standards when tested as received. The worst case's test data was presented in this test report. Test items Radiated Electromagnetic Disturbance (30 MHz -300 MHz) and Radiated EM filed immunity were subcontracted.

All models had the same mechanical structure, output load, PCB layout; the only deference is the parameters for the components used in secondary circuit. Model EIP012C1200LS, EIP012C0700LS, EIP012C0250LS were selected to do the full tests based on above statement.

The production units are required to conform to the initial sample as received when the units are placed on the market.

Model list:

Model	Rated input voltage	Frequency	Output voltage range	Max. output voltage
EIP012C0250LS	220-240VAC	50/60Hz	24V-48VDC	52VDC
EIP012C0300LS	220-240VAC	50/60Hz	20V-40VDC	45VDC
EIP012C0350LS	220-240VAC	50/60Hz	17V-34VDC	40VDC
EIP012C0400LS	220-240VAC	50/60Hz	15V-30VDC	35VDC
EIP012C0450LS	220-240VAC	50/60Hz	13.3V-26.7VDC	32VDC
EIP012C0500LS	220-240VAC	50/60Hz	12V-24VDC	28VDC
EIP012C0550LS	220-240VAC	50/60Hz	11V-22VDC	26VDC
EIP012C0600LS	220-240VAC	50/60Hz	10V-20VDC	24VDC
EIP012C0650LS	220-240VAC	50/60Hz	9V-18.5VDC	23VDC
EIP012C0700LS	220-240VAC	50/60Hz	9V-17VDC	21VDC
EIP012C0750LS	220-240VAC	50/60Hz	8V-16VDC	20VDC
EIP012C0800LS	220-240VAC	50/60Hz	7.5V-15VDC	19VDC
EIP012C0850LS	220-240VAC	50/60Hz	7V-14.1VDC	18VDC
EIP012C0900LS	220-240VAC	50/60Hz	6.6V-13.3VDC	17VDC
EIP012C0950LS	220-240VAC	50/60Hz	6.3V-12.6VDC	16VDC
EIP012C1000LS	220-240VAC	50/60Hz	6V-12VDC	16VDC
EIP012C1050LS	220-240VAC	50/60Hz	5.7V-11.4VDC	15VDC
EIP012C1100LS	220-240VAC	50/60Hz	5.5V-11VDC	15VDC
EIP012C1150LS	220-240VAC	50/60Hz	5.2V-10.4VDC	14VDC
EIP012C1200LS	220-240VAC	50/60Hz	5V-10VDC	13VDC

3 LABORATORY MEASUREMENTS

Configuration Information

Equipment Under Test (EUT): Electronic controlgear for LED (Electronic LED

driver)

Model: EIP012C1200LS, EIP012C0700LS,

EIP012C0250LS

Serial No. Not Labeled

Support Equipment: LED diode as load, supplied by client

Rated Voltage: 220-240V/50/60Hz

Condition of Environment: Temperature : 15~25°C

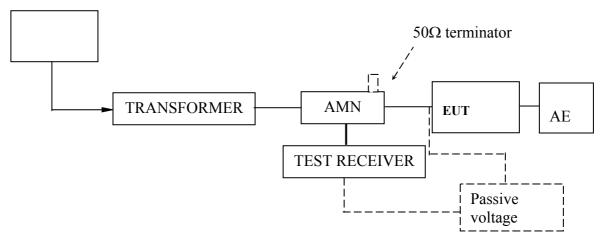
Relative Humidity: 35~60% Atmosphere Pressure 86~106kPa

Notes:

1. The EMI measurements had been made in the operating mode produced the largest emission in the frequency band being investigated consistent with normal applications. An attempt had been made to maximize the emission by varying the configuration of the EUT.

2. The EMS measurements had been made in the frequency bands being investigated, with the EUT in the most susceptible operating mode consistent with normal applications. The configuration of the test sample had been varied to achieve maximum susceptibility.

4 EMI TEST


4.1 EN 55015 Continuous Conducted Disturbance Voltage Test

Test Result: Pass

4.1.1 Used Test Equipment

Equipment No.	Equipment	Model	Manufacturer
EM080-05	EMI receiver	ESCI	R&S
EM006-05	LISN	ENV216	R&S
EM004-04	EMC shield Room	8m×3m×3m	Zhongyu

4.1.2 Block Diagram of Test Setup

4.1.3 Test Setup and Procedure

The EUT was set to achieve the maximum emission level. The mains terminal disturbance voltage was measured with the EUT in a shielded room. The EUT was connected to AC power source through an Artificial Mains Network which provide a 50Ω linear impedance Artificial hand is used if appropriate (for handheld apparatus). The load/control terminal disturbance voltage was measured with passive voltage probe if appropriate.

The EUT was placed on a 0.4m high non-metallic table above a metallic plane, and 0.4m from wall of shielded room which is considered as Ground Reference Plane (GRP) (For floor standing EUT, was placed on a 0.1m high non-metallic supported on GRP) The EUT keeps a distance of at least 0.8m from any other of the metallic surface. The Artificial Mains Network is situated at a distance of 0.8m from the EUT.

During the test, mains lead of EUT excess 0.8m was folded back and forth parallel to the lead so as to form a horizontal bundle with a length between 0.3m and 0.4m.

The bandwidth of test receiver was set at 200Hz in the frequency range from 9kHz to 150KHz, and 9kHz in the frequency range from 150kHz to 30MHz.

4.1.4 Test Data

At main terminal: Pass Model: EIP012C0250LS

Tested Wire: Live Operation Mode: on mode

	EDI	Γ PEAK LIST (Final	Measurement Resul	ts)
Tra	ce1:	CE1511QP		
Tra	ce2:	CE1511AV		
Tra	ce3:			
	TRACE	FREQUENCY	LEVEL dBµV	DELTA LIMIT dB
2	Average	426 kHz	42.67 L1	-4.65
1	Quasi Peak	566 kHz	49.05 L1	-6.94
1	Quasi Peak	426 kHz	50.37 L1	-6.95
2	Average	574 kHz	39.03 L1	-6.96
1	Quasi Peak	286 kHz	52.56 L1	-8.07
2	Average	1.194 MHz	36.73 L1	-9.26
2	Average	1.59 MHz	36.53 L1	-9.46
2	Average	286 kHz	41.16 L1	-9.48
2	Average	3.042 MHz	36.30 L1	-9.70
2	Average	16.086 MHz	39.26 L1	-10.73
1	Quasi Peak	1.126 MHz	44.69 L1	-11.30
2	Average	150 kHz	43.14 L1	-12.85
1	Quasi Peak	3.086 MHz	42.71 L1	-13.28
1	Quasi Peak	1.498 MHz	42.62 L1	-13.37
1	Quasi Peak	15.802 MHz	43.63 L1	-16.36
1	Quasi Peak	174 kHz	48.03 L1	-16.73
1	Quasi Peak	4.878 MHz	35.58 L1	-20.41

Tested Wire: Neutral Operation Mode: on mode

EDIT	PEAK LIST (Final	Measurement Resul	ts)
Tracel:	CE1511QP		
Trace2:	CE1511AV		
Trace3:			
TRACE	FREQUENCY	LEVEL dBµV	DELTA LIMIT dB
2 Average	478 kHz	40.98 L1	-5.38
2 Average	566 kHz	40.51 L1	-5.48
1 Quasi Peak	282 kHz	54.69 L1	-6.05
1 Quasi Peak	570 kHz	49.46 L1	-6.53
2 Average	282 kHz	44.14 L1	-6.61
1 Quasi Peak	466 kHz	49.16 L1	-7.41
2 Average	1.126 MHz	37.48 L1	-8.51
2 Average	1.594 MHz	37.10 L1	-8.89
2 Average	3.162 MHz	36.45 L1	-9.54
1 Quasi Peak	1.194 MHz	45.68 L1	-10.31
2 Average	158 kHz	43.26 L1	-12.30
1 Quasi Peak	3.098 MHz	42.90 L1	-13.09
1 Quasi Peak	158 kHz	52.24 L1	-13.31
1 Quasi Peak	1.474 MHz	42.56 L1	-13.43
1 Quasi Peak	15.81 MHz	46.14 L1	-13.85
2 Average	16.094 MHz	35.67 L1	-14.32
1 Quasi Peak	4.214 MHz	34.90 L1	-21.09
1 Quasi Peak	9.75 MHz	38.79 L1	-21.20

Model: EIP012C0700LS

Tested Wire: Live Operation Mode: on mode

	EDI	r PEAK LIST (Final	Measurement Resul	.ts)			
Tracel:		CE1511QP					
Tra	ce2:	CE1511AV					
Tra	ce3:						
	TRACE	FREQUENCY	LEVEL dBµV	DELTA LIMIT dB			
2	Average	454 kHz	38.93 L1	-7.86			
2	Average	538 kHz	38.08 L1	-7.91			
2	Average	1.358 MHz	37.49 L1	-8.50			
2	Average	3.162 MHz	37.48 L1	-8.51			
1	Quasi Peak	438 kHz	47.84 L1	-9.25			
1	Quasi Peak	658 kHz	46.12 L1	-9.87			
2	Average	1.838 MHz	36.11 L1	-9.89			
1	Quasi Peak	906 kHz	45.36 L1	-10.63			
1	Quasi Peak	278 kHz	49.28 L1	-11.58			
2	Average	230 kHz	40.38 L1	-12.06			
1	Quasi Peak	3.23 MHz	43.73 L1	-12.26			
2	Average	154 kHz	42.67 L1	-13.10			
1	Quasi Peak	158 kHz	52.34 L1	-13.22			
1	Quasi Peak	1.746 MHz	42.68 L1	-13.31			
2	Average	16.074 MHz	35.35 L1	-14.64			
1	Quasi Peak	4.966 MHz	36.03 L1	-19.97			

Tested Wire: Neutral Operation Mode: on mode

	EDI	Γ PEAK LIST (Final	Measurement Resul	ts)
Tra	ce1:	CE1511QP		
Tra	ce2:	CE1511AV		
Tra	ce3:			
	TRACE	FREQUENCY	LEVEL dBµV	DELTA LIMIT dB
2	Average	442 kHz	41.39 L1	-5.63
2	Average	558 kHz	39.29 L1	-6.70
2	Average	3.266 MHz	38.47 L1	-7.52
1	Quasi Peak	450 kHz	49.29 L1	-7.58
2	Average	1.286 MHz	38.10 L1	-7.89
2	Average	282 kHz	42.60 L1	-8.14
2	Average	1.85 MHz	36.85 L1	-9.14
1	Quasi Peak	542 kHz	46.47 L1	-9.52
1	Quasi Peak	1.286 MHz	46.07 L1	-9.92
1	Quasi Peak	298 kHz	49.76 L1	-10.53
1	Quasi Peak	3.206 MHz	45.13 L1	-10.86
2	Average	166 kHz	43.58 L1	-11.57
1	Quasi Peak	1.466 MHz	43.74 L1	-12.25
1	Quasi Peak	174 kHz	51.36 L1	-13.40
2	Average	3.966 MHz	31.05 L1	-14.94
2	Average	16.09 MHz	32.20 L1	-17.79
1	Quasi Peak	4.138 MHz	37.43 L1	-18.56

Model: EIP012C1200LS

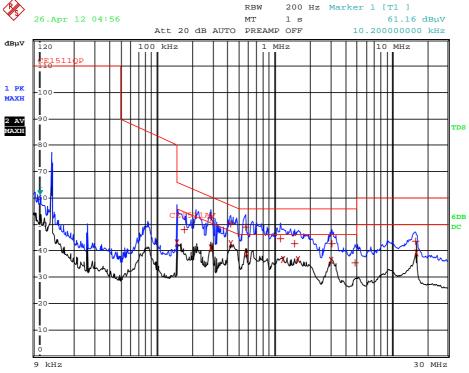
Tested Wire: Live Operation Mode: on mode

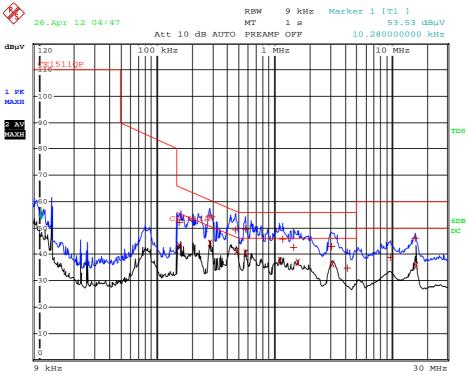
	EDI'	Г РЕАК LIST (Final	Measurement Resul	.ts)
Trace1:		CE1511QP		
Tra	ce2:	CE1511AV		
Tra	ice3:			
	TRACE	FREQUENCY	LEVEL dBµV	DELTA LIMIT dB
2	Average	474 kHz	41.36 L1	-5.07
2	Average	778 kHz	39.85 L1	-6.14
2	Average	310 kHz	43.18 L1	-6.78
1	Quasi Peak	310 kHz	52.72 L1	-7.24
2	Average	2.846 MHz	38.38 L1	-7.61
2	Average	1.354 MHz	37.79 L1	-8.20
2	Average	1.458 MHz	37.59 L1	-8.40
1	Quasi Peak	450 kHz	48.45 L1	-8.41
1	Quasi Peak	778 kHz	47.55 L1	-8.45
1	Quasi Peak	942 kHz	45.04 L1	-10.95
1	Quasi Peak	2.826 MHz	44.94 L1	-11.05
2	Average	166 kHz	42.82 L1	-12.33
1	Quasi Peak	1.706 MHz	42.93 L1	-13.07
1	Quasi Peak	170 kHz	51.35 L1	-13.60
1	Quasi Peak	4.77 MHz	36.81 L1	-19.19
1	Quasi Peak	9.658 MHz	31.88 L1	-28.11

Tested Wire: Neutral Operation Mode: on mode

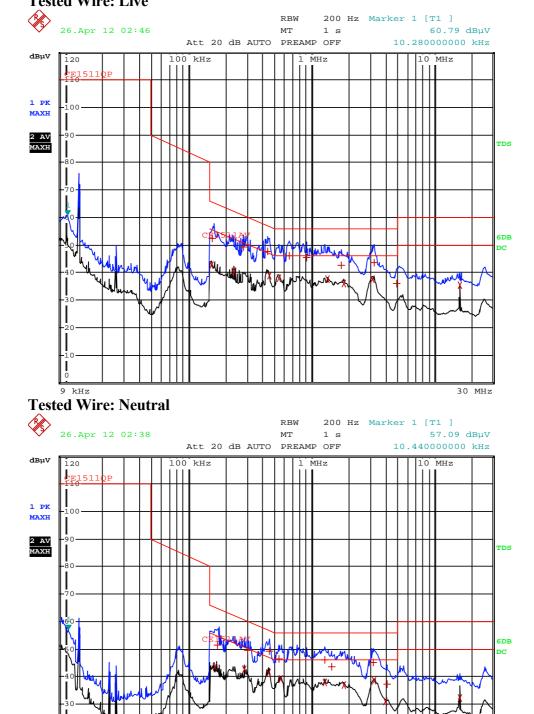
			-	
		F PEAK LIST (Final	Measurement Resu	ılts)
	ace1:	CE1511QP		
Tr	ace2:	CE1511AV		
Tr	ace3:			
	TRACE	FREQUENCY	LEVEL dBµV	DELTA LIMIT dB
2	Average	306 kHz	46.15 L1	-3.92
2	Average	474 kHz	42.02 L1	-4.41
1	Quasi Peak	306 kHz	54.89 L1	-5.18
2	Average	766 kHz	40.20 L1	-5.79
1	Quasi Peak	458 kHz	50.10 L1	-6.62
2	Average	2.814 MHz	38.90 L1	-7.09
2	Average	1.326 MHz	38.28 L1	-7.71
2	Average	1.454 MHz	38.11 L1	-7.88
1	Quasi Peak	782 kHz	47.72 L1	-8.27
1	Quasi Peak	910 kHz	45.89 L1	-10.10
1	Quasi Peak	1.442 MHz	45.53 L1	-10.46
1	Quasi Peak	2.842 MHz	45.51 L1	-10.48
2	Average	166 kHz	44.24 L1	-10.91
1	Quasi Peak	178 kHz	51.45 L1	-13.11
2	Average	4.806 MHz	31.31 L1	-14.68
1	Quasi Peak	4.89 MHz	37.67 L1	-18.33

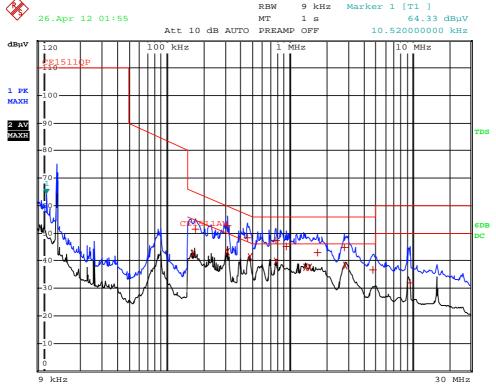
At load/control terminal: Not Applicable


Frequency	Quasi-Peak		Average	
[MHz]	Disturbance level	Permitted limit	Disturbance level	Permitted limit
	$[dB(\mu V)]$	$[dB(\mu V)]$	$[dB(\mu V)]$	$[dB(\mu V)]$
			-	
			1	

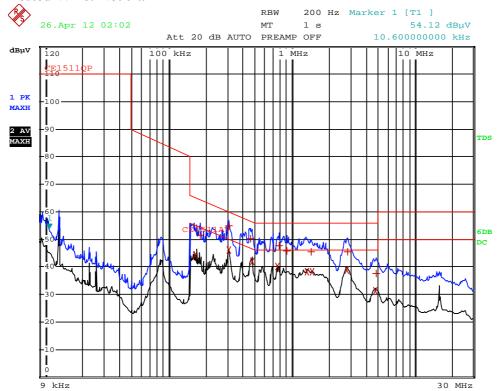

4.1.5 Emission Curve

At mains terminal: Model: EIP012C0250LS


Tested Wire: Neutral


Model: EIP012C0700LS Tested Wire: Live

9 kHz



Model: EIP012C1200LS Tested Wire: Live

Tested Wire: Neutral

At load/control terminal:

Not Applicable.

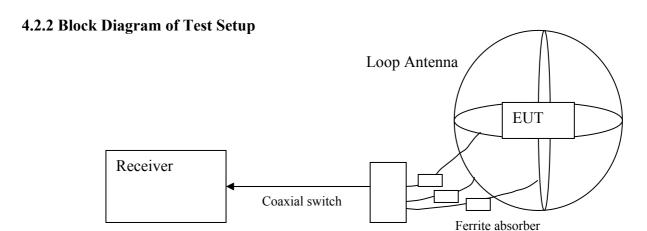
4.1.6 Measurement Uncertainty

The measurement uncertainty describes the overall uncertainty of the given measured value during the operation of the EUT.

Measurement uncertainty is calculated in accordance with CISPR 16-4-2: 2003.

Measurement uncertainty of mains terminal disturbance voltage in CISPR band A: 1.6 dB.

Measurement uncertainty of mains terminal disturbance voltage in CISPR band B: 2.3 dB.


The measurement uncertainty is given with a confidence of 95%, k=2.

4.2 EN 55015 Radiated Electromagnetic Disturbance (9 kHz-30 MHz)

Test Result: Pass

4.2.1 Used Test Equipment

Equipment No.	Equipment	Model	Manufacturer
EM080-04	EMI receiver	ESCS30	R&S
EM061-04	Triple Loop Antenna	HXYZ9170	SCHWARZBECK
EM004-03	EMC shield Room	8m×4m×3m	Zhongyu

4.2.3 Test Setup and Procedure

The EUT is placed in the centre of the loop antenna system(LAS). The current induced by the magnetic field from the EUT into each of the three large loop antennas of the LAS is measured by connecting the current probe of the large loop antenna to a measuring receiver. During the measurements the EUT remains in a fixed position.

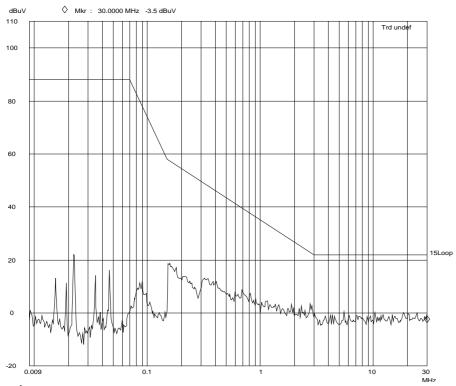
The currents in the three large loop antenna, origination from the three mutually orthogonal magnetic field components, are measured in sequence. Each current level measured shall comply with the emission limit, expressed in dB μ A, as specified in table of EN 55015. The distance between the outer perimeter of the LAS and nearby objects, such as floor and walls, shall be at least 0.5m.

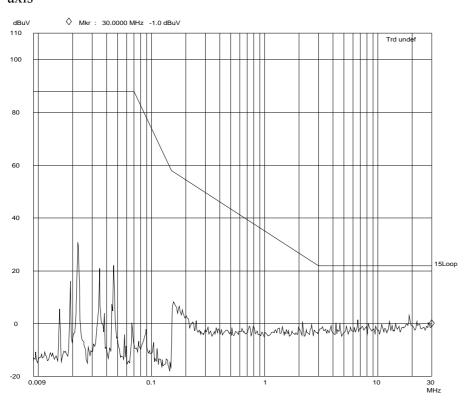
To avoid unwanted capacitive coupling between the EUT and the LAS, the maximum dimensions of the EUT shall allow a distance of at least 0.2m between the EUT and the standardized 2m large loop antenna of the LAS.

The position of the mains lead shall be optimized for maximum current induction. In general, this position will not be critical when the EUT complies with the conducted emission limit.

4.2.4 Test Data

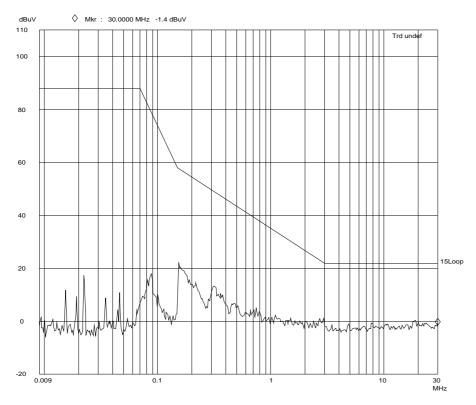
For models: EIP012C0250LS, EIP012C0700LS, EIP012C1200LS


Frequency [MHz]	X axis [dB(μA)]	Υ axis [dB(μA)]	Z axis [dB(µA)]	Limit [dB(μA)]
0.009	<78	<78	<78	88.0
0.050	< 78	<78	< 78	88.0
0.100	<64	<64	<64	74.0
0.160	<47	<47	<47	57.2
0.240	<40	<40	<40	52.4
0.550	<30	<30	<30	42.5
1.000	<25	<25	<25	35.4
1.400	<20	<20	<20	31.4
2.000	<17	<17	<17	27.1
3.500	<12	<12	<12	22.0
6.000	<12	<12	<12	22.0
10.000	<12	<12	<12	22.0
22.000	<12	<12	<12	22.0
30.000	<12	<12	<12	22.0

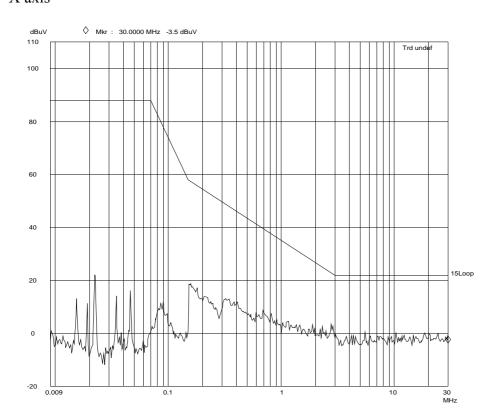

4.2.5 Test Curve

Model: EIP012C0250LS

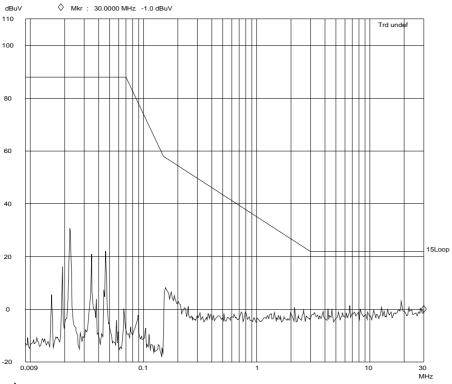
X axis



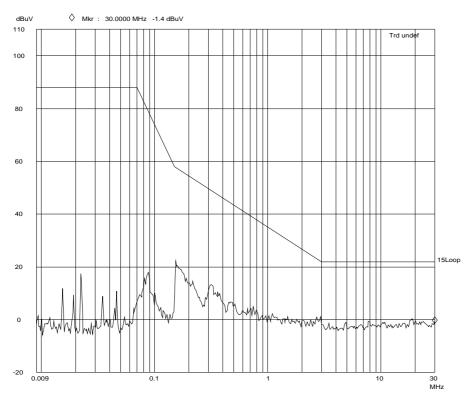
Y axis



Z axis

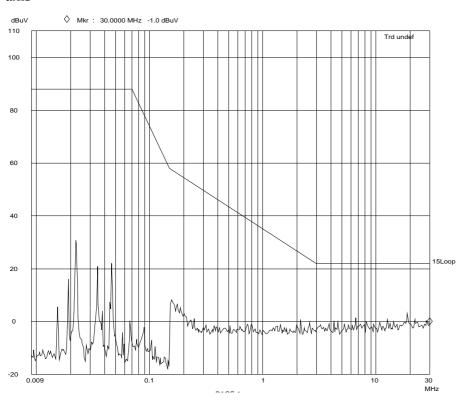


Model: EIP012C0700LS X axis



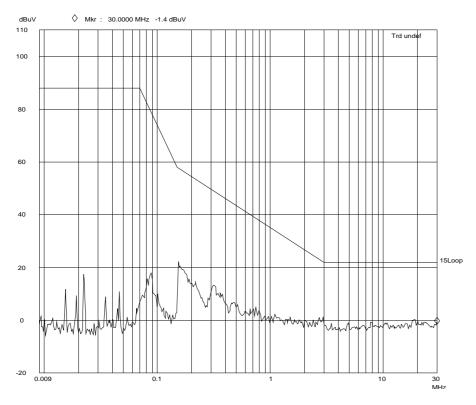
Y axis


Z axis



Model: EIP012C1200LS

X axis

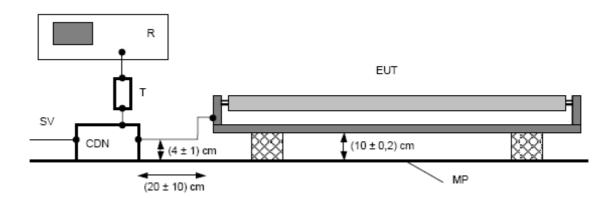


Y axis

Z axis

4.2.6 Measurement Uncertainty

The measurement uncertainty for induction current is under consideration according to CISPR 16-4-2:2003.



4.3 EN 55015 Radiated Electromagnetic Disturbance (30 MHz -300 MHz, CDN method) Test Result: Pass

4.3.1 Used Test Equipment

Equip. No.	Equipment	Model	Manufacturer
EM004-04	EMC shield Room	8m×3m×3m	Zhongyu
EM080-05	EMI receiver	ESCI	R&S
EM003-02	Coupling & Decoupling	CDN M2 16	TESEQ
	Network		
EM003-01-05	Attenuator	6dB	drhubert

4.3.2 Block Diagram of Test Setup

4.3.3 Test Setup and Procedure

The EUT shall be placed on a non-conducting table with a height of (10 \pm 0.2) cm.

The EUT is connected to CDN with a length of (20 \pm 10) cm and the distance of the cable to the metal plate should be (4 \pm 1) cm.

The RF output of the CDN is connected to EMI receiver via a 6 dB, 50Ω attenuator.

The distance from any conductive parts shall be more than 40 cm.

Prior to a measurement, the lamps shall be operated until stabilization has been reached. 5min for incandescent lamps, 15min for fluorescent lamp, 30min for other discharge lamp.

The EUT should be powered on before the coaxial cable is connected to receiver every time. And the coaxial cable should be removed from receiver before stopping EUT.

4.3.4 Test Data

EIP012C0250LS

	012002.									
		EDIT	PEAK	LIST	(Final	Measure	ment	Result	ts)	
Tra	ce1:		15CDN							
Tra	ce2:									
Tra	ce3:									
	TRAC	E	FI	REQUE	NCY	LEVEL C	lΒμV		DELTA LIMIT	dВ
1	Quasi	Peak	67.44	MHz		51.41	L1		-5.85	
1	Quasi	Peak	71.64	MHz		50.02	L1		-6.74	
1	Quasi	Peak	87.84	MHz		44.68	L1		-10.38	
1	Quasi	Peak	30.16	MHz		52.19	L1		-11.75	
1	Quasi	Peak	36.12	MHz		50.53	L1		-11.92	
1	Quasi	Peak	40.04	MHz		48.97	L1		-12.63	
1	Quasi	Peak	61.32	MHz		43.26	L1		-14.79	
1	Quasi	Peak	95.04	MHz		37.99	L1		-16.43	
1	Quasi	Peak	46.36	MHz		41.85	L1		-18.53	
1	Quasi	Peak	143.6	MHz		35.13	L1		-18.86	
1	Quasi	Peak	146.7	2 MHz		34.96	L1		-19.03	
1	Quasi	Peak	118.3	2 MHz		32.56	L1		-21.43	
1	Quasi	Peak	225.4	4 MHz		31.93	L1		-22.06	
1	Quasi	Peak	193.6	MHz		31.53	L1		-22.46	
1	Quasi	Peak	196.2	MHz		31.47	L1		-22.52	

EIP012C0700LS

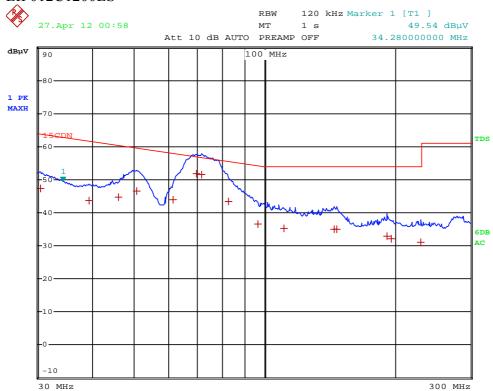
	EDIT	F PEAK LIST (Final	Measurement Resul	.ts)
Tra	ce1:	15CDN		
Tra	.ce2:			
Tra	.ce3:			
	TRACE	FREQUENCY	LEVEL dBµV	DELTA LIMIT dB
1	Quasi Peak	67.16 MHz	51.25 L1	-6.05
1	Quasi Peak	71.64 MHz	49.69 L1	-7.08
1	Quasi Peak	86.24 MHz	44.74 L1	-10.48
1	Quasi Peak	30.04 MHz	52.15 L1	-11.83
1	Quasi Peak	35.64 MHz	50.45 L1	-12.11
1	Quasi Peak	61.6 MHz	44.56 L1	-13.45
1	Quasi Peak	40.48 MHz	47.91 L1	-13.59
1	Quasi Peak	101.64 MHz	40.04 L1	-13.95
1	Quasi Peak	144.76 MHz	35.42 L1	-18.58
1	Quasi Peak	147.48 MHz	34.96 L1	-19.03
1	Quasi Peak	47.68 MHz	40.90 L1	-19.24
1	Quasi Peak	122.16 MHz	32.61 L1	-21.39
1	Quasi Peak	194.32 MHz	31.51 L1	-22.48
1	Quasi Peak	197.36 MHz	31.47 L1	-22.52
1	Quasi Peak	228.2 MHz	30.64 L1	-23.35

EIP012C1200LS

	012C1200L5			
	EDI:	r PEAK LIST (Final	Measurement Resul	ts)
Tra	cel:	15CDN		
Tra	.ce2:			
Tra	.ce3:			
	TRACE	FREQUENCY	LEVEL dBµV	DELTA LIMIT dB
1	Quasi Peak	69.76 MHz	51.83 L1	-5.15
1	Quasi Peak	71.48 MHz	51.60 L1	-5.18
1	Quasi Peak	82.48 MHz	43.31 L1	-12.29
1	Quasi Peak	50.6 MHz	46.68 L1	-12.97
1	Quasi Peak	61.48 MHz	44.03 L1	-14.00
1	Quasi Peak	46 MHz	44.79 L1	-15.65
1	Quasi Peak	30.36 MHz	47.33 L1	-16.56
1	Quasi Peak	96.56 MHz	36.50 L1	-17.79
1	Quasi Peak	39.24 MHz	43.57 L1	-18.20
1	Quasi Peak	110.8 MHz	35.31 L1	-18.68
1	Quasi Peak	144.92 MHz	34.98 L1	-19.01
1	Quasi Peak	146.56 MHz	34.96 L1	-19.03
1	Quasi Peak	192.04 MHz	32.82 L1	-21.17
1	Quasi Peak	196.56 MHz	32.02 L1	-21.97
1	Quasi Peak	229.92 MHz	31.09 L1	-22.91
		1		

4.3.5 Test Curve

EIP012C0250LS



EIP012C0700LS

EIP012C1200LS

4.3.6 Measurement uncertainty

The measurement uncertainty for Radiated Electromagnetic Disturbance t (30 MHz -300 MHz, CDN method) is under consideration according to CISPR 16-4-2:2003.

4.4 Insertion Loss

Test Result: Not Applicable.

Remark: Not required by standard.

5 Harmonics of current

Test Result: Pass

Remark:

EUT is not discharge lighting, the harmonics currents limits are not specified for the equipment with a rated power smaller than or equal to 25W. Therefore the EUT was deemed fulfill the requirements of relative standard without testing.

6 Flicker

Test Result: Pass Remark: Pass

The product is unlikely to produce significant voltage fluctuations or flicker, so no Flicker tests were performed.

7 EMS TEST

Performance Criteria:

Criterion A: During the test no change of the luminous intensity shall be observed and the

regulating control, if any, shall operate during the test as intended.

Criterion B: During the test the luminous intensity may change to any value. After the test

the luminous intensity shall be restored to its initial value within 1 min.

Regulating controls need not function during the test, but after the test the mode of the control shall be the same as before the test provided that during

the test no mode changing commands were given.

Criterion C: During and after the test any change of the luminous intensity is allowed and

the lamp(s) may be extinguished. After the test, within 30 min, all functions shall return to normal if necessary by temporary interruption of the mains

supply and /or operating the regulating control.

Additional requirement for lighting equipment incorporation a starting device:

After the test the lighting equipment is switched off. After half an hour it is witched on again. The lighting equipment shall start and operate as intended.

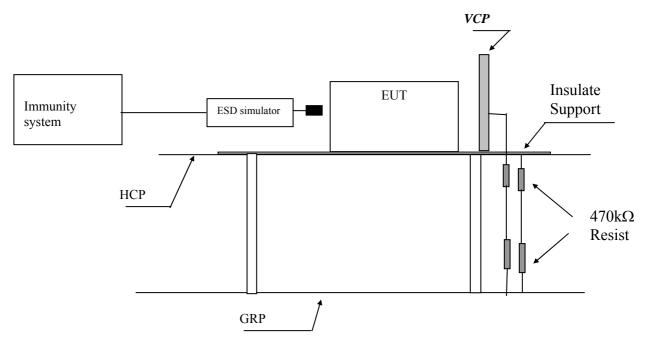
Measurement Uncertainty

According to CISPR 16-4-2:2003, measurement uncertainty to immunity test is under consideration

Note: "N/A" means Not Applicable in below text.

7.1 EN 61000-4-2(Pursuant to EN 61547) Electrostatic Discharge Immunity

Performance criterion: B


Test Result: Pass

7.1.1 Used Test Equipment

Equip. No.	Equipment	Model	Manufacturer
EM077-02	ESD Simulator	NSG435	SCHAFFNER

7.1.2 Block Diagram of Test Setup

Note: HCP means Horizontal Coupling Plane,

VCP means <u>Vertical Coupling Plane</u> GRP means <u>Ground Reference Plane</u>

7.1.3 Test Setup and Procedure

The EUT was put on a (0.8 ± 0.08) m high wooden tabel/0.1m high for floor standing equipment standing on the ground reference plane(GRP) 3m by 2m in size, made by iron 1.0 mm thick. A horizontal coupling plane(HCP) (1.6 ± 0.02) m by (0.8 ± 0.02) m in size was placed on the table, and the EUT with its cables were isolated from the HCP by an insulating support with (0.5 ± 0.05) mm thick. The VCP 0.5m by 0.5m in size & HCP were constructed from the same material type & thinkmess as that of the GRP, and connected to the GRP via a $470 \mathrm{k}\Omega$ resistor at each end.

For floor standing equipment, The EUT shall be isolated from the ground reference plane by an insulating support of 0,05 mto 0,15 m thick. The EUT cables shall be isolated from the ground reference plane by an insulating support of $(0,5\pm0,05)$ mm. This cable isolation shall extend beyond the edge of the EUT isolation.

The distance between EUT and any of the other metallic surface excepted the GRP, HCP & VCP was greater than 0.8m.

The EUT was arranged and connected according to its functional requirements.

Direct static electricity discharges was applied only to those points and surface which are accessible to personnel during normal usage, terminals are excluded.

On each preselected points 10 times of each polarity single discharge were applied.

The ESD generator was held perpendicular to the surface to which the discharge is applied.

The discharge return cable of the generator was kept at a distance of 0.2m whilst the discharge is being applied. During the contact discharges, the tip of the discharge electrode was touch the EUT before the discharge switch is operated. During the air discharges, the round discharge tip of the discharge electrode was approached as fast as possible to touch the EUT.

Indirect discharge was conducted to objects placed near the EUT, simulated by applying the dischares of the ESD generator to a coupling plane, in the contact discharge mode.

After each discharge, the ESD generator was removed from the EUT, the generator is then retriggered for a new single discharge. For ungrounded product, a grounded carbon fibre brush with bleeder resistors ($2\times470~\text{k}\Omega$) in the grounding cable was used after each discharge to remove remnant electrostatic voltage.

10 times of each polarity single discharge were applied to HCP and VCP. The detail selected points are listed in the following table.

7.1.4 Test Result

Direct Application of ESD

Direct Contact Discharge

Applied Voltage (kV)	No. of Discharge for each point	Result (Pursuant to EN 61547)	Discharged Points
4	20	Pass	Accessible metal parts of the EUT.

Direct Air Discharge

Applied Voltage (kV)	No. of Discharge for each point	Result (Pursuant to EN 61547)	Discharged Points
2, 4, 8	20	Pass	All accessible points where contact discharge cannot be applied such as Air gap.

Indirect Application of ESD

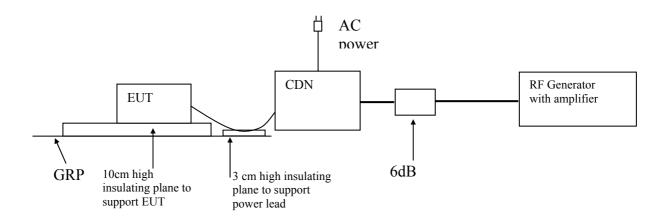
Horizontal Coupling Plane under the EUT

Applied Voltage (kV)	No. of Discharge for each point	Result (pursuant to EN 61547)	Discharged Point
4	20	Pass	At the front edge of each HCP opposite the centre point of each unit of the EUT

Vertical Coupling Plane beside the EUT

Applied Voltage (kV)	No. of Discharge for each point	Result (pursuant to EN 61547 criterion B)	Discharged Point
4	20	Pass	The centre of the vertical edge of the coupling plane

7.2 EN 61000-4-6(Pursuant to EN 61547) Injected Current (0.15 MHz to 80 MHz)


Performance criterion: A

Test Result: Pass

7.2.1 Used Test Equipment

Equip. No.	Equipment	Model	Manufacturer
EM019-01	Conducted Immunity Testing System	NSG4070-75	Teseq GmbH
EM019-01-02	Coupling & Decoupling Network	CDNM016	Teseq GmbH
EM019-01-03	6dB Attenuator	ATN6075	Teseq GmbH

7.2.2 Block Diagram of Test Setup

7.2.3 Test Setup and Procedure

The EUT was placed on an insulating support of 0.1m height above a ground reference Plane, arranged and connected to satisfy its functional requirement.

All relevant cables were provided with the appropriate coupling and decoupling devices at a distance between 0.1m and 0.3m from the projected geometry of the EUT on an insulating support of 0.03m height above the ground reference plane.

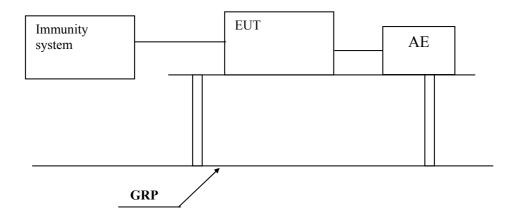
Test voltage was verified before each testing though power meter combined in the RF generator with AMP.

Dwell time was set to 3s and step was set as 1% to keep sufficient response time for EUT. The frequency from 0.15MHz to 80MHz was checked.

7.2.4 Test Result

Port:	Frequency (MHz)	Level (Pursuant to EN 61547)	Result
A.C. Power Lines	0.15 to 80	3V (r.m.s.)	Pass
D.C. Power Lines	0.15 to 80	3V (r.m.s.)	N/A
Signal Lines	0.15 to 80	3V (r.m.s.)	N/A
Control Lines	0.15 to 80	3V (r.m.s.)	N/A

7.3 EN 61000-4-4(Pursuant to EN 61547) Electrical Fast Transient/Burst


Performance criterion: B

Test Result: Pass

7.3.1 Used Test Equipment

Equipment No.	Equipment	Model	Manufacturer
EM005-07	EMS test system	Ecompact 4	HAEFELY

7.3.2 Block Diagram of Test Setup

7.3.3 Test Setup and Procedure

The EUT was placed on a 0.1m high wooden table, standing on the ground reference plane 3m by 2m in size, made by steel 1mm thick.

The distance between the EUT and any other of the metallic surface except the GRP is greater than 0.5m.

The mains lead excess than 0.5m is folded to avoid a flat coil and situated at a distance of 0.1m above the ground reference plane to insure the distance between the coupling device and the EUT were 0.5m.

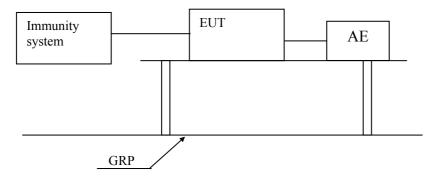
The EUT was arranged and connected to satisfy its functional requirement and supplied by the coupling-decoupling network.

7.3.4 Test Result

Level (Pursuant to EN 61547)	Polarity	Input and Output A.C. Power Ports	D.C. Power Ports, Signal and Control Lines
0.5kV	+	N/A	N/A
0.5kV	-	N/A	N/A
1kV	+	Pass	N/A
1kV	-	Pass	N/A

7.4 EN 61000-4-5(Pursuant to EN 61547) Surge Immunity

Performance criterion: ⊠ C


□ **B** (lumimaire for emergency lighting)

Test Result: Pass

7.4.1 Used Test Equipment

Equipment No.	Equipment	Model	Manufacturer
EM005-09	Surge/DIP Generator	NSG3040	TESEQ

7.4.2 Block Diagram of Test Setup

7.4.3 Test Setup and Procedure

The surge is to be applied to the EUT power supply terminals via the capacitive coupling network.

Decoupling networks are required in order to avoid possible adverse effects on equipment not under test that may be powered by the same lines and to provide sufficient decoupling impedance to the surge wave so that the specified wave may be developed on the lines under test.

The EUT was arranged and connected according to its functional requirements.

The EUT was placed on a 0.1m high wooden support above the GRP), supplied by the coupling-decoupling network, and arranged and connected to satisfy its functional requirement. The power cord between the EUT and the coupling/decoupling network was less than 2 meters.

Five positive and five negative pulses shall be applied at the peak value and zero crossing points of the a.c. voltage wave.

7.4.4 Test Result

☑ I. For Self-ballasted lamps and semi-luminaires and independent auxiliaries with input power less or equal to 25 W:

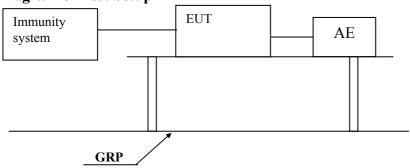
Level (Pursuant to EN 61547)		Result
Between Phase And Phase:	0.5 kV	N/A
Between Phase And Neutral:	0.5 kV	Pass
Between Phase And Earth:	0.5 kV, 1.0 kV	N/A
Between Neutral And Earth:	0.5 kV, 1.0 kV	N/A

☐ II. For luminaires and independent auxiliaries with input power greater than 25 W:

Level (Pursuant to EN 61547)		Result
Between Phase And Phase:	0.5 kV, 1.0 kV	N/A
Between Phase And Neutral:	0.5 kV, 1.0 kV	N/A
Between Phase And Earth:	0.5 kV, 1.0 kV, 2.0 kV	N/A
Between Neutral And Earth:	0.5 kV, 1.0 kV, 2.0 kV	N/A

7.5 EN 61000-4-11(Pursuant to EN 61547) Voltage Dips and Interruptions

Performance criterion:


for table 11 of EN 61547 ----- C for table 12 of EN 61547----- B

Test Result: Pass

7.5.1 Used Test Equipment

Equipment No.	Equipment	Model	Manufacturer
EM005-07	EMS test system	Ecompact 4	HAEFELY

7.5.2 Block Diagram of Test Setup

7.5.3 Test Setup and Procedure

The EUT was placed on an insulating support of 0.8m height, standing on a ground reference plane, and arranged and connected to satisfy its functional requirement

The test was performed with the EUT connected to the test generator with the shortest power supply cable as specified by the EUT manufacturer.

The EUT was tested for each selected combination of test level and duration with a sequence of three dips/interruptions with intervals of 10 s minimum. Each representative mode of operation was tested.

EUT is tested for voltage reduction of 0%Ut, 0.5 period, 70%Ut, 10 periods, both the positive and negative polarity test was conducted.

Changes to the voltage level shall occur at a zero crossing point in the a.c. voltage waveform.

7.5.4 Test Result

I. According to table 11 of EN 61547

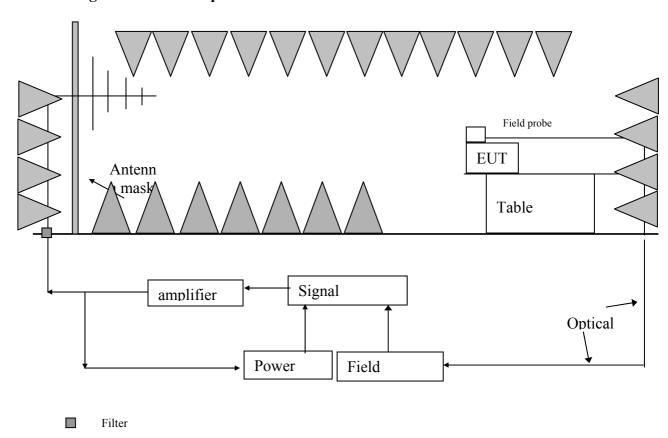
Test condition (Pursuant to EN 61547)		Result
Test Level in %U _T Duration (in period of the rated frequency)		
70	10	Pass

II. According to table 12 of EN 61547

Test condition (Pu	Result	
Test Level in %U _T Duration (in period of the rated frequency)		
0 0.5		Pass

Remark: U_T is the rated voltage for the equipment.

7.6 EN 61000-4-3(Pursuant to EN 61547) Radiated Electromagnetic Field Immunity


Performance criterion: A

Test Result: Pass

7.6.1 Used Test Equipment

Equipment No.	Equipment	Model	Manufacturer
SB3433	Signal Generator	SMT03	R&S
SB3437/01	Voltage Probe	URV5-Z2	R&S
SB3173	Power Amplifier	150W100	AR
SB2622	Bilog Antenna	CBL6111C	Chase
SB3450/02	FAC	MCDC	Albatross Pro.
	Power Meter	NRVS	R&S

7.6.2 Block Diagram of Test Setup

7.6.3 Test Setup and Procedure

The test was conducted in an fully anechoic chamber to maintain a uniform field of sufficient dimensions with respect to the EUT, and also in order to comply with various national and international laws prohibiting interference to radio communications.

The equipment is placed in the test facility on a non-conducting table 0.8m high (for floor standing EUT, is placed on a non-conducting support 0.1m height).

The EUT was placed on the uniform calibrated plane which is 3V/m EM field.

For all ports connected to EUT, manufacturer specified cable type and length was used, for those cables no specification, unshielded cable applied.

Wire is left exposed to the electromagnetic field for a distance of 1m from the EUT.

The EUT was arranged and connected according to its functional requirements

Before testing, the intensity of the established field strength have been checked by placing the field sensor at a calibration grid point, and with the field generating antenna and cables in the same positions as used for the calibration, the forward power needed to give the calibrated field strength was measured.

Spot checks was made at a number of calibration grid points over the frequency range 80MHz to 1000MHz, both polarizations was checked.

After calibration, the EUT is initially placed with one face coincident with the calibration plane.

The frequency range is swept from 80MHz to 1000MHz, with the signal 80% amplitude modulated with a 1 kHz sinewave, pausing to adjust the r.f. signal level.

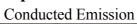
The dwell time at each frequency was 3s so as that the EUT to be exercised and be able to respond.

The step size was 1% of the fundamental with linear interpolation between calibrated points. Test was performed with the generating antenna facing each of the four sides of the EUT.

7.6.4 Test Result

Frequency (MHz)	Exposed Side	Field Strength (V/m)	Result
80 to 1000	Front	3V/m (r.m.s.)	Pass
80 to 1000	Left	3V/m (r.m.s.)	Pass
80 to 1000	Rear	3V/m (r.m.s.)	Pass
80 to 1000	Right	3V/m (r.m.s.)	Pass

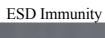
7.7 EN 61000-4-8(Pursuant to EN 61547) Power Frequency Magnetic Field Immunity

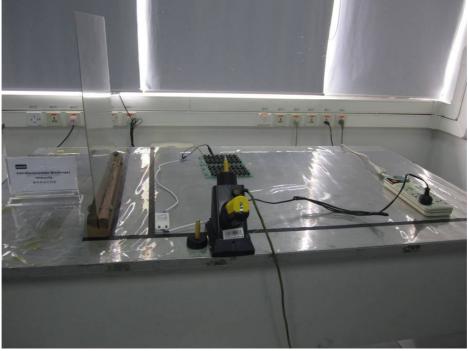

Performance criterion: A Test Result: Not Applicable

Remark:

Equipment containing no Hall elements or magnetic field sensors is not susceptible to magnetic field. Hence, this equipment is deemed to fulfil the magnetic field test.

8 Appendix I - Photos of test setup


Radiated Electromagnetic Filed Disturbance




Radiated Emission(CDN method)



